Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8

Q.

Consider the equation (log2x)24log2xm22m13=0 in the variable x,' m '  being a parameter (mR). Let the real roots of the equation be x1,x2 where x1<x2 then The minimum value of x2 is
 

see full answer

High-Paying Jobs That Even AI Can’t Replace — Through JEE/NEET

🎯 Hear from the experts why preparing for JEE/NEET today sets you up for future-proof, high-income careers tomorrow.
An Intiative by Sri Chaitanya

answer is 64.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

log2x24log2xm2+2m+13=0 log2x=4±16+4(1)m2+2m+132 log2x1=2m2+2m+17log2x2=2+m2+2m+17 log2x2 is minimum when x2 is minimum,  log2x2=2+m2+2m+17log2x2=2+(m+1)2+16  Minimum when m=1 log2x2min.=2+16=6x2min.=26=64
 

Watch 3-min video & get full concept clarity

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
Consider the equation (log2x)2−4log2x−m2−2m−13=0 in the variable x,' m '  being a parameter (m∈R). Let the real roots of the equation be x1,x2 where x1<x2 then The minimum value of x2 is