Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5

Q.

Consider the equation (log2x)24log2xm22m13=0 in the variable x,' m '  being a parameter (mR). Let the real roots of the equation be x1,x2 where x1<x2 then The minimum value of x2 is
 

see full answer

Talk to JEE/NEET 2025 Toppers - Learn What Actually Works!

Real Strategies. Real People. Real Success Stories - Just 1 call away
An Intiative by Sri Chaitanya

answer is 64.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

log2x24log2xm2+2m+13=0 log2x=4±16+4(1)m2+2m+132 log2x1=2m2+2m+17log2x2=2+m2+2m+17 log2x2 is minimum when x2 is minimum,  log2x2=2+m2+2m+17log2x2=2+(m+1)2+16  Minimum when m=1 log2x2min.=2+16=6x2min.=26=64
 

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon