Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Consider the planes P1:2x+y+z+4=0, P2:yz+4=0 and P3 : 3x+2y+z+8=0. Let L1, L2, L3 be the lines of intersection of the planes P2 and P3, P3 and P1, and P1 and P2 respectively. Then,

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

Atleast two of the lines L1, L2 and L3 are parallel or coincident 

b

Atleast two of the lines L1, L2 and L3 are non-parallel 

c

The three planes intersect in a line

d

The three planes form a triangular prism

answer is B, C.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

detailed_solution_thumbnail

Observe that the lines L1, L2 and L3 are parallel to the vector i^j^k^

Also, Δ=0=Δ1 & b1c2  b1c1 Hence the three planes intersect in a line.
P1=2x+y+z+4=0

P2 = 0x + y – z + 4 = 0
P3 = 3x + 2y + z + 8 = 0
P2 and P3 gives line L1
vector parallel to line L1=|i^j^k^011321|
=3i^3j^3k^ =3[i^j^k^]

Similarly
vector parallel to L3P1 and P2=|i^j^k^211011|
=(2)i^(2)j^+2k^ =2i^+2j^+2k^

=2(i^j^k^)

We can see all the lines are parallel to vector (i^j^k^)
Also 2x + y + z = – 4
0x + y – z = – 4
3x + y + z = – 8
Δ=|211011321| 2(1+2)1(0+3)+1(03) 2(3)33=0     Δ1=|411411821|=0 Δ2=|241041381|=0 =4|211011321|=0 Δ3=0

So all planes intersection in line L.

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring