Q.

Consider the planes P1:2x+y+z+4=0, P2:yz+4=0 and P3 : 3x+2y+z+8=0. Let L1, L2, L3 be the lines of intersection of the planes P2 and P3, P3 and P1, and P1 and P2 respectively. Then,

see full answer

Want to Fund your own JEE / NEET / Foundation preparation ??

Take the SCORE scholarship exam from home and compete for scholarships worth ₹1 crore!*
An Intiative by Sri Chaitanya

a

Atleast two of the lines L1, L2 and L3 are parallel or coincident 

b

Atleast two of the lines L1, L2 and L3 are non-parallel 

c

The three planes intersect in a line

d

The three planes form a triangular prism

answer is B, C.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

detailed_solution_thumbnail

Observe that the lines L1, L2 and L3 are parallel to the vector i^j^k^

Also, Δ=0=Δ1 & b1c2  b1c1 Hence the three planes intersect in a line.
P1=2x+y+z+4=0

P2 = 0x + y – z + 4 = 0
P3 = 3x + 2y + z + 8 = 0
P2 and P3 gives line L1
vector parallel to line L1=|i^j^k^011321|
=3i^3j^3k^ =3[i^j^k^]

Similarly
vector parallel to L3P1 and P2=|i^j^k^211011|
=(2)i^(2)j^+2k^ =2i^+2j^+2k^

=2(i^j^k^)

We can see all the lines are parallel to vector (i^j^k^)
Also 2x + y + z = – 4
0x + y – z = – 4
3x + y + z = – 8
Δ=|211011321| 2(1+2)1(0+3)+1(03) 2(3)33=0     Δ1=|411411821|=0 Δ2=|241041381|=0 =4|211011321|=0 Δ3=0

So all planes intersection in line L.

Watch 3-min video & get full concept clarity
score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon