Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5

Q.

Divide as directed. 

(i) 5(2x + 1) (3x + 5) ÷ (2x + 1) 

(ii) 26xy(x + 5)(y – 4) ÷ 13x(y – 4) 

(iii) 52pqr (p + q) (q + r) (r + p) ÷ 104pq(q + r) (r + p) 

(iv) 20(y + 4) (y 2 + 5y + 3) ÷ 5(y + 4) 

(v) x(x + 1) (x + 2) (x + 3) ÷ x(x + 1)

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

answer is 1.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

In this question we simply divide the given expression and delete the same part and then we get the correct solution

(i) 5(2x + 1) (3x + 5) ÷ (2x + 1) :

so here, (2x +1) is common in both 

Thus, we get

5(2x + 1) (3x + 5) ÷ (2x + 1) = 5(2x + 1) (3x + 5) / (2x + 1)

=5  (3x + 5)

(ii) 26xy(x + 5)(y – 4) ÷ 13x(y – 4) :

so here, (y -4), 13x is common in both 

Thus, we get

26xy(x + 5)(y – 4) ÷ 13x(y – 4) = 26xy(x + 5)(y – 4) / 13x(y – 4)

= 2y (x + 5)

(iii) 52pqr (p + q) (q + r) (r + p) ÷ 104pq(q + r) (r + p) :

so here,  52pq(q + r) (r + p)  is common in both 

Thus, we get

 52pqr (p + q) (q + r) (r + p) ÷ 104pq(q + r) (r + p) =  52pqr (p + q) (q + r) (r + p) / 104pq(q + r) (r + p)

= r (p + q) /2

(iv) 20(y + 4) (y 2 + 5y + 3) ÷ 5(y + 4) :

so here, 5 (y + 4), is common in both 

Thus, we get

 20(y + 4) (y 2 + 5y + 3) ÷ 5(y + 4)  = 20(y + 4) (y 2 + 5y + 3) / 5(y + 4) 

= 4 (y 2 + 5y + 3)

(v) x(x + 1) (x + 2) (x + 3) ÷ x(x + 1) :

so here, x (x + 1), is common in both 

Thus, we get

 x(x + 1) (x + 2) (x + 3) ÷ x(x + 1) = x(x + 1) (x + 2) (x + 3) / x(x + 1) 

= ( x + 2) ( x + 3)

Watch 3-min video & get full concept clarity

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon