Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6

Q.

Evaluate:
0πx9sin2x+16cos2xdx

see full answer

Talk to JEE/NEET 2025 Toppers - Learn What Actually Works!

Real Strategies. Real People. Real Success Stories - Just 1 call away
An Intiative by Sri Chaitanya

answer is 1.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

Assume,
I=0πx9sin2x+16cos2xdx
Now, recall that,
abf(x)dx=abf(a+bx)dx
Using that for given integral,
I=0ππx9sin2(πx)+16cos2(πx)dxI=0ππx9sin2x+16cos2xdx.(2)
Adding equation (1) and (2)
2I=0ππ9sin2x+16cos2xdxI=π0π219sin2x+16cos2xdx(using property)
I=π0π/4sec2x9tan2x+16dx+π/4π/2cosec2x9+16cot2xdx=πI1+I2 (say) =π01dt9t2+1610dz9+16z2 t=tanx inI1,z=cotx inI2=π12tan13t401tan14z3011=π12tan134+tan143
or π12×π2=π224
Therefore, 0πx9sin2x+16cos2xdx=π12tan134+tan143. Which is the required answer.

Watch 3-min video & get full concept clarity

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
Evaluate:∫0π x9sin2⁡x+16cos2⁡xdx