Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

 Evaluate 0πxlogsinxdx

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

12π2log(1/2)

b

π2log(2)

c

π2log(1/2)

d

2π2log(1/2)

answer is A.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

 Let I=0πxlogsinxdx--------(1)

I=0π(πx)logsin(πx)dx=0π(πx)logsinxdx---------(2)

 Adding equations (1) and (2), we get 2I=π0πlogsinxdx

 or  2I=2π0π/2logsinxdx 

I=π0π/2logsinxdx ----(3) I=π0π/2logsin(π2-x)dx  =π0π/2logcosxdx ----(4)

(3) + (4)

2I=π0π/2logsinx+logcosxdx   

 (take logsinxcosx=log2sinxcosx2)

=π0π/2logsin2xdx-π0π/2log2dx

put 2x=t,  dx=dt2  UL=π, LL=0

2I=π20πlogsintdt-πlog2π2

2I=π0π2logsintdt-π22log2

2I=I-π22log2

I=-π22log2

=π22log(1/2)

 

 

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring