Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6

Q.

 Evaluate tanθdθ 12tan1tanθ12tanθ+122logAB+C

see full answer

Talk to JEE/NEET 2025 Toppers - Learn What Actually Works!

Real Strategies. Real People. Real Success Stories - Just 1 call away
An Intiative by Sri Chaitanya

a

tanθ2tanθ+1tanθ+2tanθ+1

b

tanθ+2tanθ+1tanθ-2tanθ+1

c

tanθ2tanθ+1tanθ+2tanθ+1

d

None of these

answer is A.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

 Let I=tanθdθ  Let tanθ=x2 . Then, d(tanθ)=dx2 or sec2θdθ=2xdx  or dθ=2xdxsec2θ=2xdx1+tan2θ=2xdx1+x4I=x2×2xdx1+x4=2x2x4+1dx=2x2+1/x2dx=1+1/x2+11/x2x2+1/x2dx=1+1/x2x2+1/x2dx+11/x2x2+1/x2dx=1+1/x2(x1/x)2+2dx+11/x2(x+1/x)22dxputting x1x=u in the first integral and  x+1x=v in  the second integral we getI=duu2+(2)2+dvv2(2)2=12tan1u2+122logv2v+2+C=12tan1x1/x2+122logx+1/x2x+1/x+2+C=12tan1x21x2+122logx2x2+1x2+x2+1+C=12tan1tanθ12tanθ=12tan1tanθ12tanθ+122logtanθ2tanθ+1tanθ+2tanθ+1+C

Watch 3-min video & get full concept clarity

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon