Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Evaluate the integrals π/2π/2sin2 xdx

OR

Evaluate the integrals 02π11+esinxdx

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

answer is 1.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

Let I=π/2π/2sin2xdx
Here, f(x)=sin2 x
Now, f(x)=sin2 (x)=[sin (x)]2
=(−sin x)2 [sin (θ)=sin θ]
=sin2 x=f(x)
 So, f(x) is an even function. 
 I=π/2π/2sin2 xdx=20π/2sin2 xdx
aaf(x)dx=20af(x)dx, if f(x) is an even function,  here sin2x is an even function.
=20π/21cos 2x2dx cos 2θ=12sin2 θ
=0π/2(1cos2x)dx=xsin2x20π/2=π2sinπ2[00]=π20=π2

OR

Let I=02π11+esinxdx(1)  
 I=0π11+esin x+11+esin (2πx)dx02af(x)dx=02a{f(x)+f(2ax)}dx

=0π11+esin x+11+esin xdx
[sin (2πθ)=sin θ]
=0π11+esin x+esin xesin x+1dx
=0π1+esin x1+esin xdx=0π1dx=[x]0π=[π0]=π

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring