Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

f is a function from + to  +, where + is the set of non-negative integers which has the following properties :  

a) f(n+1)>f(n)  for each n+ 
b) f(n+f(m))=f(n)+m+1 for all m,n+  
The function satisfies the conditions (a) & (b) and yields a unique value of f(2023) is a four digit number ABCD then A+B+C+D is equal to 

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

answer is 8.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

1. Let  f(0)=k, at m=0, where  k is a non – negative integer 
Then the condition b) gives 
f(n+k)=f(n)+1-----(1) 
 Putting  n=0 in (1), we get  f(k)=f(0)+1
    f(k)=k+1(2)
Substituting n1 for n and k form into condition (b) we get
f(n1+f(k))=f(n1)+k+1 f(n1+k+1)=f(n1)+k+1  from 2 f(n+k)=f(n1)+k+1 -----(3) 

From (1) & (3)  f(n)+1=f(n1)+k+1
 f(n)=f(n1)+k
n+  using this repeatedly gives 
f(n)=f(n1)+k

=[f(n2)+k]=(n2)+2k =f(n3)+3k=  = f(0)+nk If f(n)=(n+1)k  then  f(0)=k

From (2),  f(k)=k+1, so that we have 

(k+1)=k(k+1)   k=±  1

f(0)=k,  is a non- negative integer,  k=1
Hence  f(2023)=(2023+1)×1
=2024  ABCD and A+B+C+D=8
Note that condition (a) is satisfied by this value of k.

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring