Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8

Q.

f(x)={x2(e1/xe1/xe1/x+e1/x);x00,x=0.   Then

see full answer

High-Paying Jobs That Even AI Can’t Replace — Through JEE/NEET

🎯 Hear from the experts why preparing for JEE/NEET today sets you up for future-proof, high-income careers tomorrow.
An Intiative by Sri Chaitanya

a

f'(0)=2

b

f(x)  is continuous but non-differentiable at  x=0

c

 f(x)  is differentiable at  x=0

d

f(x)  is discontinuous at  x=0

answer is C.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

detailed_solution_thumbnail

At  x=0,
L.H.L=limx0f(x)=limh0f(0h) =limh0h2(e1/he1/he2/h+e1/h) =limh0h2(e2/h1e2/h+1) =0(010+1)=0 R.H.L.=limx0+f(x)=limh0f(0+h) =limh0h2(e1/he1/he1/h+e1/h) =limh0h2(1e2/h1+e2/h)
=0(101+0)=0 and  f(0)=0
L.H.L=R.H.L=f(0)
Hence, f(x)  is continuous at  x=0.
Also,  L.H.D=limh0f(0h)f(0)h
=limh0h2e1/he1/he1/h+e1/h0h
=limh0he2/h1e2/h+1 =0

and  R.H.D=limh0f(0+h)f(0)h
=limh0h2e1/he1/he1/h+e1/h0h =limh0h1e2/h1+e2/h

=0
Hence, f(x)  is differentiable at x=0  and  f'(0)=0
 

Watch 3-min video & get full concept clarity

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon