Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5

Q.

Factorise the expressions and divide them as directed. 

(i) (y 2 + 7y + 10) ÷ (y + 5) 

(ii) (m2 – 14m – 32) ÷ (m + 2) 

(iii) (5p 2 – 25p + 20) ÷ (p – 1) 

(iv) 4yz(z 2 + 6z – 16) ÷ 2y(z + 8) 

(v) 5pq(p 2 – q 2 ) ÷ 2p(p + q) 

(vi) 12xy(9x 2 – 16y 2 ) ÷ 4xy(3x + 4y) 

(vii) 39y 3 (50y 2 – 98) ÷ 26y 2 (5y + 7)

see full answer

Talk to JEE/NEET 2025 Toppers - Learn What Actually Works!

Real Strategies. Real People. Real Success Stories - Just 1 call away
An Intiative by Sri Chaitanya

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

In this question we simply divide the given expression and delete the same part and then we get the correct solution

(i) (y 2 + 7y + 10) ÷ (y + 5) :

so here, (y2 +7y +10) = y2 +2y +5y  +10

= y ( y + 2) + 5 ( y + 2)

= ( y + 2) ( y + 5)

Thus, we get

(y 2 + 7y + 10) ÷ (y + 5)  = ( y + 2) ( y + 5) /  ( y + 5)

=( y + 2) 

(ii) (m- 14m - 32) ÷ (m + 2) :

so here, (m- 14m - 32) = m2 -16m +2m- 32 

= m ( m + 2) - 16 ( m + 2)

= ( m + 2) ( m - 16)

Thus, we get

(m- 14m - 32) ÷ (m + 2)  = ( m + 2) ( m - 16) / ( m + 2) 

=  ( m - 16)

(iii) (5p 2 - 25p + 20) ÷ (p - 1) :

so here, (5p 2 - 25p + 20)  = 5 ( p 2 - 5p + 4)

= 5 ( p 2 - p - 4p + 4)

= 5 [ p( p -1 ) - 4 ( p - 1)]

= 5 ( p - 4) ( p - 1)

Thus, we get

 (5p 2 - 25p + 20) ÷ (p - 1)  = 5 ( p - 4) ( p - 1) / ( p - 1)

= 5 ( p - 4) 

(iv) 4yz(z+ 6z - 16) ÷ 2y(z + 8) :

so here,  4yz(z+ 6z - 16)  = 4yz (z 2  - 2z +8z - 16)

= 4yz ( z 2 - 2z + 8z - 10)

= 4yz [ z( z -2 ) + 8 ( z - 2)]

= 4yz ( z - 2) ( z + 8)

Thus, we get

 4yz(z+ 6z - 16) ÷ 2y(z + 8) = 4yz ( z - 2) ( z + 8) / 2y ( z + 8)

= 2z ( z - 2)

(v) 5pq(p 2 - q 2 ) ÷ 2p(p + q) :

By using this identity, a2 - b2 = (a + b)(a - b)

so here,  5pq(p 2 - q 2 )  = 5pq (p - q) (p + q)

Thus, we get

5pq(p 2 - q 2 ) ÷ 2p(p + q) = 5pq (p - q) (p + q) / 2p(p + q)

= 5q (p - q) /2

(vi) 12xy(9x 2 - 16y 2 ) ÷ 4xy(3x + 4y) :

By using this identity, a2 - b2 = (a + b)(a - b)

so here,  12xy(9x 2 - 16y 2 )= 12xy (3x - 4y) (3x + 4y)

Thus, we get

12xy(9x 2 - 16y 2 ) ÷ 4xy(3x + 4y) = 12xy (3x - 4y) (3x + 4y) / 4xy(3x + 4y)

= 3 (3x - 4y) 

(vii) 39y 3 (50y 2 - 98) ÷ 26y 2 (5y + 7):

By using this identity, a2 - b2 = (a + b)(a - b)

so here,  39y 3 (50y 2 – 98)= 3 × 13 × 2 × y × y × y(5y - 7)(5y + 7) 

26y 2 (5y + 7) =  2 × 13 × y × y × (5y + 7)

Thus, we get

 39y 3 (50y 2 - 98) ÷ 26y 2 (5y + 7)  = 3 × 13 × 2 × y × y × y(5y - 7)(5y + 7)/  × 13 × y × y × (5y + 7

= 3y (5y - 7)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon