Q.

Find order and degree of the following differential equations.

 i) dydx=x1/2y1/2(1+x)1/2                                        ii) d2ydx2=1+dydx25/3

 iii) 1+d2ydx22=2+dydx23/2                  iv) d2ydx2+2dydx+y=logdydx

 v) dydx1/2+d2ydx21/31/4=0                   vi) d2ydx2=p2y

 vii) d3ydx323dydx2ex=4                         viii) x1/2d2ydx21/3+xdydx+y=0

 ix) d2ydx2+dydx36/5=6y

see full answer

Want to Fund your own JEE / NEET / Foundation preparation ??

Take the SCORE scholarship exam from home and compete for scholarships worth ₹1 crore!*
An Intiative by Sri Chaitanya

answer is 1.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

i) Highest derivative is dydx,

then order is 1 highest derivative power is one  i.e dydx1, then degree is 1.

 ii)  d2ydx2=1+dydx251/3

cubing on both sides

d2ydx23=1+dydx25

Order -2, degree -3

 iii)  1+d2ydx22=2+dydx231/2

squaring on both sides

1+d2ydx222=2+dydx23

Order-2, degree-4

iv) Order -2 , degree not defined since the equation cannot be expressed as a polynomial equation in the derivatives.

 v) dydx1/2+d2ydx21/31/4=0

dydx1/2+d2ydx21/31/44=0

dydx1/2+d2ydx21/3=0

dydx1/26=d2ydx21/36

dydx3=d2ydx22

Order -2, degree -2
vi) Order -2, degree -1
vii) Order -3, degree -2
viii) Order -2, degree-1
ix) Order -2, degree -1

Watch 3-min video & get full concept clarity
score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon