Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Find the acute angle of intersection of curves, y=[|sinx|+|cosx|] and x2+y2=5, where [.] denotes the greatest integral function.

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

tan-12

b

45°

c

0°

d

None of these

answer is A.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

The given curves are y = sinx+cosx and x2+y2=5.

Now, we know sinx+cosxmin = 1 (When either of them is zero).

And,

sinx+cosxmax= (sinx + cosx)max  =2sinx+π4max =2.

 (sinx+cosx)[1,2] sinx+ cosx = 1, for xR

This means that the first curve is simply the straight line y = 1 and ordinate of point of intersections is 1.

x2 = 5 - y2 = 4 x = ±2 

Hence, the points of intersections are A(-2,1), B(2,1).

Now, on differentiating equation of second curve w.r.t x, we get,

2x + 2ydydx=0 dydx= -xy

For second curve, slope of tangent at A = dydx(-2,1)=2 and that at B = dydx(2,1) = -2.

Now, angle of intersections is the angle made by the line y = 1 and the tangents to second curve at A, B.

Since, y = 1 is parallel to x-axis, angle made by tangents with x-axis and the line are equal.

tanθA = 2, tanθB= -2.

Hence, the acute angle of intersections are both equal to tan-1(2) and option 1 is correct.

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring