Q.

Find the adjoint of the matrix
A=122212221  and hence show that A(adj A) = |A|I3

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

answer is 1.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

Given, A=122212221
Let Aij be the cofactor of an element aij of A. Then, cofactors of elements of |A| areA11=(1)1+11221=(14)=3A12=(1)1+22221=(2+4)=6A13=(1)1+32122=(42)=6A21=(1)2+12221=(24)=6A22=(1)2+21221=(1+4)=3A23=(1)2+31222=(2+4)=6A31=(1)3+12212=(4+2)=6A32=(1)3+21222=(2+4)=6A33=(1)3+31221=(1+4)=3
Clearly, the adjoint of the matrix A is given by
adj A=A11    A21    A31A12    A22    A32A13    A23    A33=366636663
Now, |A|=122212221
=1(14)+2(2+4)2(42)=1(3)+2(6)2(6)=3+12+12=27
and A(adjA)=122212221366636663
=3+12+1266+126+12666+1212+3+1212666+126126612+12+3=270002700027=27100010001
=27I3=|A|I3       Hence proved.

Watch 3-min video & get full concept clarity
score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
Find the adjoint of the matrixA=−1−2−221−22−21  and hence show that A(adj A) = |A|I3