Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6

Q.

Find the centre, length of major axis, minor axis, eccentricity, foci, length of latusrectum and equation of directrices of the ellipses. 

(i) 4x2+y28x+2y+1=0

(ii)  9x2+16y236x+32y92=0

 (iii) 9x2+16y2=144

see full answer

Talk to JEE/NEET 2025 Toppers - Learn What Actually Works!

Real Strategies. Real People. Real Success Stories - Just 1 call away
An Intiative by Sri Chaitanya

answer is 1.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

i) 4x2+y28x+2y+1=0
4x28x+y2+2y+1=04x22x+(y+1)2=04x22x+1+(y+1)2=44(x1)2+(y+1)2=4(x1)21+(y+1)24=1
Compare with (xh)2a2+(yk)2b2=1
a=1,b=2,a<b
 Centre c(h,k)=(1,1)
Length of major axis 2b = 2(2) = 4
 Length of minor axis 2a=2(1)=2
 Eccentricity e=b2a2b2=414=32
Foci are (h,k±be)=1,1±232=(1,1±3)
Length of latus rectum =2a2b=2.12=1
Equation of directrix y=k±be
y=1±23/2y=1±433y+3±4=0
ii) 9x2+16y236x+32y92=0
9x236x+16y2+32y92=09x24x+16y2+2y=929x24x+4+16y2+2y+1=92+36+169(x2)2+16(y+1)2=144
(x2)216+(y+1)29=1
Compare (xh)2a2+(yk)2b2=1
a=4,b=3,a>b
Centre (h,k) = (2,-1)
 Length of major axis =2a=2(4)=8
 Length of minor axis =2b=2(3)=6
 Eccentricity e=a2b2a2=16916=74
Foci are (h±ae,k)=2±474,1=(2±7,1)
Length of latus rectum =2b2a=2(9)4=92
Equation of directrices are x=h±ae
x=2±47/4x=2±1677x=27±16
 iii) 9x2+16y2=144
x216+y29=1 a=4,b=3,a>b  Centre c(h,k)=(0,0)  Length of major axis =2a=2(4)=8  Length of minor axis =2b=2(3)=6  Eccentricity e=a2b2a2=16916=74
 Foci are (±ae,0)=±474,0=(±7,0)  Length of latus rectum =2b2a=2(9)4=92  equation of directrices are x=±ae x=±474x=±1677x±16=0

Watch 3-min video & get full concept clarity

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon