Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6

Q.

Find the complementary and supplementary angles of {"mathml":"<math class="image_resized" style="width:24px;height:11px"></p><br><pstyle="margin-top:0pt;margin-bottom:0pt;line-height:115%;font-size:12pt"><spanstyle="font-family:

see full answer

Talk to JEE/NEET 2025 Toppers - Learn What Actually Works!

Real Strategies. Real People. Real Success Stories - Just 1 call away
An Intiative by Sri Chaitanya

a

b

c

d

{"mathml":"<math class="image_resized" style="width:92px;height:11px"><span style="font-family: 

answer is A.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

Concept- Complementary angles add up to{"mathml":"<math class="image_resized" style="width:32px;height:11px"><span style="font-family:. Since we already know that the total of the complementary angles is {"mathml":"<math class="image_resized" style="width:32px;height:11px"><span style="font-family:, all we have to do to obtain the complement of angle 55 is subtract it from that number. The complementary angle's total is {"mathml":"<math class="image_resized" style="width:37px;height:11px"><span style="font-family:. Since we already know that the total of the supplementary angles is {"mathml":"<math class="image_resized" style="width:37px;height:11px"><span style="font-family:, all we need to do to calculate the supplement of the provided angle in this case is to subtract it from{"mathml":"<math class="image_resized" style="width:37px;height:11px"><span style="font-family:.
When two angles are {"mathml":"<math class="image_resized" style="width:28px;height:11px"><span style="font-family: apart, they are complimentary.
Let the {"mathml":"<math class="image_resized" style="width:22px;height:11px"><span style="font-family: be {"mathml":"<math class="image_resized" style="width:8px;height:8px"><span style="font-family: and {"mathml":"<math class="image_resized" style="width:22px;height:9px"><span style="font-family: be{"mathml":"<math class="image_resized" style="width:28px;height:11px"><img src="" width="109" height="91" alt={"mathml":"<math class="image_resized" style="width:253px;height:14px"><img src="" width="117" height="91" alt=Hence, the correct option is 1) {"mathml":"<math class="image_resized" style="width:92px;height:11px"><span style="font-family:.
 
Watch 3-min video & get full concept clarity

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon