Q.

Find the distance of the point (– 1, – 5, – 10) from the point of intersection of the line r=2ı^ȷ^+2k^+λ(3ı^+4ȷ^+2k^) and the plane r(ı^ȷ^+k^)=5.

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

answer is 1.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

Given: r=2ı^ȷ^+2k^+λ(3ı^+4ȷ^+2k^) (i) 
Coordinates of any point on this line are 
(2+3λ)i^+(1+4λ)j^+(2+2λ)k^
Equation of plane is 
r(i^j^+k^)=5       .....(ii)
Since, the point on line lies on the plane, 
r(i^i^+k^)=5
[(2+3λ)i^+(2+4λ)j^+(2+2λ)](i^j^+k^)=5 (2+3λ)(1+4λ)+(2+2λ)=5 λ+5=5 λ=0 
So equation of line is
r=(2i^j^+2k^)+0(3i^+4j^+2k^)r=2i^j^+2k^               ....(iii)
Let, point of intersection be (x, y, z)
 r=xi^+yj^+zk .....(iv)^
From equations (iii) and (iv)
x=2,y=1,z=2
 Point of intersection is (2,-1,2).
Distance between points (2,-1,2) and (-1,-5,-10) is
 =(12)2+(5+1)2+(102)2=(3)2+(4)2+(12)2=9+16+144=169=13 units 
Therefore, the distance of the point (– 1, – 5, – 10) from the point of intersection of the line 
r=2ı^ȷ^+2k^+λ(3ı^+4ȷ^+2k^) and the plane r(ı^ȷ^+k^)=5 is 13 units.

Watch 3-min video & get full concept clarity
score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon