Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Find the eccentricity, center, vertices, foci, length of latusrectum and the equations of directrices of the hyperbolas
 i) 5x24y2+20x+8y4=0  ii) 4x29y28x32=0
iii)Find the eccentricity, length of latus rectum, centre, foci, vertices and the equation to the directrices of the hyperbola
iv) Find the eccentricity, length of latus rectum, centre, foci, vertices and the equation to the directrices of the hyperbola
5x24y2+20x+8y4=04x25y216x+10y+31=0

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

 i) 5x24y2+20x+8y4=05x2+20x4y2+8y4=05x2+4x4y22y+1=05x2+2(2)x+444(y1)2=05(x+2)2204(y1)2=05(x+2)24(y1)2=20520(x+2)2420(y1)2=1(x+2)24(y1)25=1
This is in the form of (xh)2a2(yk)2b2=1
a2=4,b2=5
a) Centre c = (h, k) = (-2,1)
b) Eccentricity (e)=a2+b2a2=4+54=32
c) Vertices A=(h+a,k)=(-2+2,1)=(0,1) 
A=(ha,k)=(22,1)=(4,1)
 d) foci s=(h±ae,k)
=2±232,1=(2±3,1)=(1,1),(5,1)
e) Length of latus rectum = 2b2a=2×52=5
f) Equations of directrices
x=h±ae=2±232=2±43=6±433x=2,3x=103x+2=0,3x+10=0
ii)
4x29y28x32=04x28x9y232=04x22x9y232=04x22(1)x+119y232=04(x1)249y232=04(x1)29y2=364(x1)2369y236=1(x1)29y24=1a2=9,b2=4
a) Centre c = (h, k) = (1, 0)
 b) Eccentricity e=a2+b2a2=9+49=133  c) Vertices A=(h+a,k)=(1+3,0)=(4,0) A=(ha,k)=(13,0)=(2,0)  d) foci =(h±ae,k)=1±3×133,0=(1±13,0)  e) Length of latusrectum =2b2a=2×43=83  f) Equations of directrices x=h±ae =1±3133=1±913
iii)
Sol: Equation of the hyperbola is
4x25y216x+10y+31=04x24x5y22y=314x24x+45y22y+1=31+1654(x2)25(y+1)2=20(y1)24(x2)25=1
comparing with (yK)2b2(xh)2a2=1
a2=5,b2=4,h=2,k=+1  centre =(h,k)=(2,1) e=a2+b2b2=5+44=94=32  foci =(h,K±be)=(2,1±3)=(2,4) and (2,2)
equations of the directrices are
yK=±bey1=±2233y3=±43y7=0 and 3y+1=0
iv)
Sol: Equation of the hyperbola is
5x24y2+20x+8y45x2+4x4y22y=45x2+4x+44y22y+1=4+2045(x+2)24(y1)2=20(x+2)24(y1)25=1
comparing with (xh)2a2(yK)2b2=1
a2=4,b2=5,h=2,K=1  centre =(h,K)=(2,1)  foci =(h±ae,K) a2e2=a2+b2=4+5=9;ae=3e=aea=32  foci are (2±3,1)=(1,1) and (5,1) equation of the directrices are xh=±aex+2=±2233x+6=±4  i.e 3x+6=4 or 3x+6=4 equation of the directrices are 3x + 2 = 0 and 3x + 10 = 0  length of the latus rectum =2b2a=2.52=5

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring