Q.

Find the eccentricity, center, vertices, foci, length of latusrectum and the equations of directrices of the hyperbolas
 i) 5x24y2+20x+8y4=0  ii) 4x29y28x32=0
iii)Find the eccentricity, length of latus rectum, centre, foci, vertices and the equation to the directrices of the hyperbola
iv) Find the eccentricity, length of latus rectum, centre, foci, vertices and the equation to the directrices of the hyperbola
5x24y2+20x+8y4=04x25y216x+10y+31=0

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

 i) 5x24y2+20x+8y4=05x2+20x4y2+8y4=05x2+4x4y22y+1=05x2+2(2)x+444(y1)2=05(x+2)2204(y1)2=05(x+2)24(y1)2=20520(x+2)2420(y1)2=1(x+2)24(y1)25=1
This is in the form of (xh)2a2(yk)2b2=1
a2=4,b2=5
a) Centre c = (h, k) = (-2,1)
b) Eccentricity (e)=a2+b2a2=4+54=32
c) Vertices A=(h+a,k)=(-2+2,1)=(0,1) 
A=(ha,k)=(22,1)=(4,1)
 d) foci s=(h±ae,k)
=2±232,1=(2±3,1)=(1,1),(5,1)
e) Length of latus rectum = 2b2a=2×52=5
f) Equations of directrices
x=h±ae=2±232=2±43=6±433x=2,3x=103x+2=0,3x+10=0
ii)
4x29y28x32=04x28x9y232=04x22x9y232=04x22(1)x+119y232=04(x1)249y232=04(x1)29y2=364(x1)2369y236=1(x1)29y24=1a2=9,b2=4
a) Centre c = (h, k) = (1, 0)
 b) Eccentricity e=a2+b2a2=9+49=133  c) Vertices A=(h+a,k)=(1+3,0)=(4,0) A=(ha,k)=(13,0)=(2,0)  d) foci =(h±ae,k)=1±3×133,0=(1±13,0)  e) Length of latusrectum =2b2a=2×43=83  f) Equations of directrices x=h±ae =1±3133=1±913
iii)
Sol: Equation of the hyperbola is
4x25y216x+10y+31=04x24x5y22y=314x24x+45y22y+1=31+1654(x2)25(y+1)2=20(y1)24(x2)25=1
comparing with (yK)2b2(xh)2a2=1
a2=5,b2=4,h=2,k=+1  centre =(h,k)=(2,1) e=a2+b2b2=5+44=94=32  foci =(h,K±be)=(2,1±3)=(2,4) and (2,2)
equations of the directrices are
yK=±bey1=±2233y3=±43y7=0 and 3y+1=0
iv)
Sol: Equation of the hyperbola is
5x24y2+20x+8y45x2+4x4y22y=45x2+4x+44y22y+1=4+2045(x+2)24(y1)2=20(x+2)24(y1)25=1
comparing with (xh)2a2(yK)2b2=1
a2=4,b2=5,h=2,K=1  centre =(h,K)=(2,1)  foci =(h±ae,K) a2e2=a2+b2=4+5=9;ae=3e=aea=32  foci are (2±3,1)=(1,1) and (5,1) equation of the directrices are xh=±aex+2=±2233x+6=±4  i.e 3x+6=4 or 3x+6=4 equation of the directrices are 3x + 2 = 0 and 3x + 10 = 0  length of the latus rectum =2b2a=2.52=5

Watch 3-min video & get full concept clarity
score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon