Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Find the equation of tangent and normal to the parabola y2=4ax at the point at2,2at

see full answer

High-Paying Jobs That Even AI Can’t Replace — Through JEE/NEET

🎯 Hear from the experts why preparing for JEE/NEET today sets you up for future-proof, high-income careers tomorrow.
An Intiative by Sri Chaitanya

a

Tangent x=a

Normal x=t

b

Tangent x+1=a

Normal y=0

c

Tangent yt=x+at2

Normal y+xt=2at+at3

d

Tangent x+y=at

Normal x-y=2at

answer is C.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

The equation of given curve is,

y2=4ax

Differentiating w.r.t. x, we get 2ydydx=4a

  dydxat2,2at=4a4at=1t

Now, the equation of tangent at at2,2at is

y2atxat2=dydxat2,2at=1t

  (y-2at)t=x-at2

 yt-2at2=x-at2yt=x+at2

 hence , it is the required equation of tangent.

and the equation of normal at at2,2at is,

y2atxat2=1dydx(at2,2at)

 y-2at=-xt+at3

hence, y+xt=2at+at3 is the  required equation of normal.

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon