Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Find the equation of the direct common tangents to the circles
x2+y2+22x4y100=0 and x2+y222x+4y+100=0

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

Given circles are x2+y2+22x4y100=0, x2+y222x+4y+100=0
Centre C1=(11,2)
Centre C2=C2=(g,f)=(11,2)
Radius r1=g2+f2c
Radius r2=121+4100
=121+4+100=25=5=225=15

Distance between the centres
C1C2=(22)2+42=500r1+r2=15+5=20=400500>400C1C2>r1+r2
Question Image
The circles are disjoint 2 Direct common tangents exist
External center of similitude divides C1C2 in the ratio r1 : r2
externally =r1:r2=15:5=3:1
ECS=3C2+1C13+1
=33112,6+22=(22,4)
Direct common tangents pass through ECS, let slope of DCT is m Equation of DCT is
yy1=mxx1y+4=m(x22)mxy22m4=0
But, it is a tangent to circle (1) d=r1 i.e., 
Length of er  from C1(11,2) to DCT=r1
|m(11)222m4|m2+1=15|33m6|=15m2+13|11m+2|=15m2+1
SOBS
(11m+2)2=25m2+1121m2+44m+4=25m2+25
96m2+44m21=096m2+72m28m21=024m(4m+3)7(4m+3)=0(4m+3)(24m7)=0 m34,m=724
If m=34
Equation of DCT is y+4=34(x22)
4y+16=3x+663x+4y50=0
If m=724
Equation of DCT is y+4=724(x22)
24y+96=7x1547x24y250=0

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring