Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5

Q.

Find the equations of the tangent and the normal, to the curve 16x2+9y2=145 at the point x1=2 and y1>0.

OR

Find the intervals in which the function f(x)=x44x35x2+24x+12 is (a) strictly increasing, (b) strictly decreasing.

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

answer is 1.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

Given: 16x2+9y2=145
Given that x1,y1 lies on given equation,
        16x12+9y12    =145    16(2)2+9y12    =145x1=2 (given)     9y12    =14564=81    y1    =3 y1>0 (given) 
 Point of contact is (2,3).
Differentiating equation (i) w.r.t. x, which will give us the slope of the tangent.
32x+18ydydx=0  dydx=32x18y
Slope of tangent at (2,3)
=dydx(2,3)=32(2)18(3)=6454=3227
 Equation of tangent is
y3=m(x2)y3=3227(x2)27y81=32x+6432x+27y=145
The slope of the normal =1Slope of tangent
=2732
 Equation of normal is
    y3    =2732(x2)        32y96    =27x54        27x32y    =42
Therefore, the equations of the tangent and the normal are 32x+27y=145 and 27x-32y=-42
respectively.

OR

Given: f(x)=x44x35x2+24x+12
Now, differentiate both sides with respect to x, it follows
    f(x)=4x343x210x+24    f(x)=x33x210x+24
For critical points, put f(x)=0
        x33x210x+24    =0    (x2)x2x12    =0    (x2)(x4)(x+3)    =0    x    =2,4,3
Therefore, we have the intervals (,3),(3,2)
(2,4) and (4,)

f(x) is increasing in (-3,2) and(4,) and decreasing in(-,-3) and (2,4)


 

Question Image
Watch 3-min video & get full concept clarity

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon