Q.

Find the number of pairs (x, y) satisfying the equation  sinx+siny=sin(x+y)and|x|+|y|=1

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

answer is 6.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

The first equation can be written as 

2sin(x+y2)cos(xy2)=2sin(x+y2)cos(x+y2)       2sin(x+y2){cos(xy2)cos(x+y2)}=0       2sin(x+y2)2sin(x2)sin(y2)=0 Either       x+y2=nπ or            x2=nπory2=nπ Either       x+y=2nπ  or  x=2nπ or            y=2nπ          |x|+|y|=1 

Question Image

 

 

 

 

 

 

 

 

 

 

       |x|1 and     |y|1

Hence,    x + y = 0
or        x = 0  or  y = 0 clearly y = 0 cuts the curve  |x|+|y|=1 at A, C, x = 0, cuts the curve  |x|+|y|=1 at B, D and x + y = 0  cuts the curve at E, F, hence 6 solutions are possible.

Watch 3-min video & get full concept clarity
score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
Find the number of pairs (x, y) satisfying the equation  sinx+siny=sin(x+y) and |x|+|y|=1