Q.

Find the orthocenter of the triangle whose sides  are x+2y=0,4x+3y5=0;3x+y=0

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

Given lines x+2y=0 ....(1) 4x+3y5=0 ....(2)3x+y=0 ...(3) 
Solving (1) & (2)
Question Image
     x      y       1 2       0      1       2 3     -5   4      3
x100=y0+5=138x10=y5=15
x10=15x=2and y5=15y=1A=(2,1)
solving (2) & (3)

  x       y        1              3     54  3        103  1       
x0+5=y15+0=149x5=y15+0=149x5=y15=15x5=15x=1y15=15y=3
B = (–1, 3)
Solving (3) & (1)
   x          y         1    1        0       3        12      0      1         2 x00=y00=161 x0=y0=15
x0=15x=0;y0=15y=0 C(0,0)A=(2,1),B=(1,3),C=(0,0)
 Slope of BC¯=y2y1x2x1=030+1=3
AD¯BC¯ slope of AD¯=1 slope of BC¯ =33=13
 Equation of AD¯;yy1=mxx1 A=(2,1)m=13y+1=13(x2)
3y+3=x2x3y5=0 ....(4)  Slope of AC¯=y2y1x2x1=0+102=12
AC¯BE¯ slope of BE¯=1 slope of AC¯m=112=2
 Equation of BE¯=yy1mxx1 B=(1,3)m=2y3=2(x+1) y3=2x+22xy+5=0 ....(2)
Solving (4) & (5)
x      y     1 -3-51-3-1   52-1
x-15-5=y-10-5=1-1+6  x20=y15=15 x20=15x=4 y15=15y=3
orthocenter = (–4, –3)

Watch 3-min video & get full concept clarity

hear from our champions

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
Find the orthocenter of the triangle whose sides  are x+2y=0,4x+3y−5=0;3x+y=0