Q.

Find the transverse common tangents of the circles
x2+y24x10y+28=0 and x2+y2+4x6y+4=0

see full answer

Want to Fund your own JEE / NEET / Foundation preparation ??

Take the SCORE scholarship exam from home and compete for scholarships worth ₹1 crore!*
An Intiative by Sri Chaitanya

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

Given equation of the circles are
x2+y24x10y+28=0(1)x2+y2+4x6y+4=0(2)
For the circle (1) centre C1 = (2,5)
 Radius r1=(2)2+(5)228
r1=4+2528 r1=1
 For the circles (2), centre, C2=(2,3)
  Radiusr2=(2)2+(3)24=4+94
r2=3
C1C2=(22)2+(53)2=(4)2+(2)2C1C2=20
 Now r1+r2=1+3=4=16
C1C2>r1+r2
Given circle are each circle lies completely out side the other
Let A1 be the internal centre of similitude .
The internal centre of similitude A1 divides
C1C2 in the ratio r1 : r2 (1: 3) internally
 The internal center of similitude
A1=mx2+mx1m+n,my2+my1m+n=1(2)+3(2)1+3,1(3+3(5))1+3=2+64,3+154=44,184=1,92
The equation to the pair of transverse common tangents is SS11=S12
x2+y2+2gx+2fy+cx12+y12+2gx1+2fy1+c=xx1+yy1+gx+x1+fy+y1+c2x2+y24x10y+2812+922+2(2)(1)+2(5)92+28=x(1)+y922(x+1)15y+92+282x2+y24x10y+281+814445+28
=x+9y22x25y52+282x2+y24x10y+28
81420=xy2+722x2+y24x10y+2814=2xy+722x2+y24x10y+28=(2xy+7)2x2+y24x10y+28=4x2+y2+49+4xy14y28x3x2+4xy24x4y+21=0
Consider
3x2+4xy=0x(3x+4y)=0x=0 and 3x+4y=03x2+4xy24x4y+21=(x+)(3x+4y+k)
Comparing coefficient of x on both sides
 we get k+3=24(3)
Camparing coefficient of ‘x’ on both sides
 we get 4=4 =1
Substitude the volue of  in (3)
k+3(1)=24k3=24k=24+3k=21
 The equation of the transverse common tangents are  
x1=0 and 3x+4y21=0

Watch 3-min video & get full concept clarity
score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon