Q.

Find the value of λ, so that the lines 1-x3=7y-14λ=z-32 and 7-7x3λ=y-51=6-z5 are at right angles. Also, find whether the lines are intersecting or not.

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

answer is 1.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

Given lines are 1-x3=7y-14λ=z-32 and 7-7x3λ=y-51=6-z5

Converting them into standard form, we have x-1-3=y-2λ7=z-32 and x-1-3λ7=y-51=z-6-5

Corresponding d.r's are (-3, λ7, 2 and -3λ7, 1, -5

Since the angle between the lines is right angle so,

cos 900=(-3) -3λ7+λ7 (1)+(2)(-5)-32+λ72+22 -3λ72+12+(-5)2 0=9λ7+λ7-10λ249+13 9λ249+26

10λ7-10=0 10λ7=10 λ=7.

Now, substitute the value of λ1-x3=y-27=z-32=a, x-1-3=y-51=z-6-5=b  (Assuming)

From first equation, (x, y, z)=(-3a+1, a+2, 2a+3) and from second equation (x, y, z)=(-3b+1, b+5, -5b+6)

Equating the corresponding values of coordinates, we have 

-3a+1=-3b+1, a+2=b+5 and 2a+3=-5b+6 

 -3a+3b=0, a-b=3 and 2a+5b=3

Solving second and third equations of the above, we get a=187 and b=-37

Substituting these value of a and b in the first one 

-3189+3-37=-9 

We can see that the first equation is not satisfied so the lines are not intersecting.
Therefore, the value of λ=7 and the lines are not intersecting.

Watch 3-min video & get full concept clarity
score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon