Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Find x such that the four points A(4, 4, 4), B(5, x, 8), C(5, 4, 1) and D (7, 7, 2) are coplanar. 

OR

Using vectors, find the area of the ΔABC, whose vertices are A(1, 2, 5), 5(2, -1, 4) and C(4, 5, -1).

see full answer

High-Paying Jobs That Even AI Can’t Replace — Through JEE/NEET

🎯 Hear from the experts why preparing for JEE/NEET today sets you up for future-proof, high-income careers tomorrow.
An Intiative by Sri Chaitanya

answer is 1.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

Given points are A(4,4,4), B(5, x, 8), C(5,4,1) and D(7,7,2), then position vectors of A, B, C and D respectively, are
OA=4i^+4j^+4k^,OB=5i^+xj^+8k^OC=5i^+4j^+k^ and OD=7i^+7j^+2k^ AB=(5i^+xj^+8k^)(4i^+4j^+4k^)=i^+(x4)j^+4k^AC=(5i^+4j^+k^)(4i^+4j^+4k^)=i^3k^ and AD=(7i^+7j^+2k^)(4i^+4j^+4k^)=3i^+3j^2k^
Given points are coplanar, if vectors AB,AC,AD are coplanar.
    [AB AC AD]=0    1x44103332=0
1(0+9)(x4)(2+9)+4(30)=09(x4)(7)+12=097x+28+12=0497x=07x=49x=7

OR

Let the position vectors of the verices A, B and C of A B C be
OA=i^+2j^+3k^,OB=2i^j^+4k^
 and OC=4i^+5j^k^, respectively. 
Question Image
Then, AB=OBOA
=(2i^j^+4k^)(i^+2j^+3k^)=i^3j^+k^ and AC=OCOA=(4i^+5j^k^)(i^+2j^+3k^)=(3i^+3j^4k^) Now, AB×AC=131334=i^(123)j^(43)+k^(3+9)=9i^+7j^+12k^                                       
   |AB×AC|=(9)2+(7)2+(12)2=81+49+144=274  Area of ABC=12|AB×AC|                              =12274 squnits                           
 

Watch 3-min video & get full concept clarity

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
Find x such that the four points A(4, 4, 4), B(5, x, 8), C(5, 4, 1) and D (7, 7, 2) are coplanar. ORUsing vectors, find the area of the ΔABC, whose vertices are A(1, 2, 5), 5(2, -1, 4) and C(4, 5, -1).