Q.

Find x such that the four points A(4, 4, 4), B(5, x, 8), C(5, 4, 1) and D (7, 7, 2) are coplanar. 

OR

Using vectors, find the area of the ΔABC, whose vertices are A(1, 2, 5), 5(2, -1, 4) and C(4, 5, -1).

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

answer is 1.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

Given points are A(4,4,4), B(5, x, 8), C(5,4,1) and D(7,7,2), then position vectors of A, B, C and D respectively, are
OA=4i^+4j^+4k^,OB=5i^+xj^+8k^OC=5i^+4j^+k^ and OD=7i^+7j^+2k^ AB=(5i^+xj^+8k^)(4i^+4j^+4k^)=i^+(x4)j^+4k^AC=(5i^+4j^+k^)(4i^+4j^+4k^)=i^3k^ and AD=(7i^+7j^+2k^)(4i^+4j^+4k^)=3i^+3j^2k^
Given points are coplanar, if vectors AB,AC,AD are coplanar.
    [AB AC AD]=0    1x44103332=0
1(0+9)(x4)(2+9)+4(30)=09(x4)(7)+12=097x+28+12=0497x=07x=49x=7

OR

Let the position vectors of the verices A, B and C of A B C be
OA=i^+2j^+3k^,OB=2i^j^+4k^
 and OC=4i^+5j^k^, respectively. 
Question Image
Then, AB=OBOA
=(2i^j^+4k^)(i^+2j^+3k^)=i^3j^+k^ and AC=OCOA=(4i^+5j^k^)(i^+2j^+3k^)=(3i^+3j^4k^) Now, AB×AC=131334=i^(123)j^(43)+k^(3+9)=9i^+7j^+12k^                                       
   |AB×AC|=(9)2+(7)2+(12)2=81+49+144=274  Area of ABC=12|AB×AC|                              =12274 squnits                           
 

Watch 3-min video & get full concept clarity

tricks from toppers of Infinity Learn

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
Find x such that the four points A(4, 4, 4), B(5, x, 8), C(5, 4, 1) and D (7, 7, 2) are coplanar. ORUsing vectors, find the area of the ΔABC, whose vertices are A(1, 2, 5), 5(2, -1, 4) and C(4, 5, -1).