Q.

Foralln1,let

f(n)=k=1n1sin((2k1)π2n)cos2((k1)π2n)cos2(kπ2n)

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

a

limnf(n)n3=4π3

b

f(3)=6

c

limnf(n)n3=8π3

d

f(3)=4

answer is B, C.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

By the double angle and sum-product identities for cosine, we have
2cos2((k1)π2n)2cos2(kπ2n)=cos((k1)πn)cos(kπn)
=2sin((2k1)π2n)sin(π2n)
and it follows that the summand in  f(n) can be written as 
1sin(π2n)(1cos2((k1)π2n)+1cos2(kπ2n)).
Thus the sum telescopes and we find that
f(n)=1sin(π2n)(1+1cos2((n1)π2n))=1sin(π2n)+1sin3(π2n).
Finally, since limx0sinxx=1,wehave
 limn(nsinπ2n)=π2,andthuslimnf(n)n3=8π3.
 

Watch 3-min video & get full concept clarity

tricks from toppers of Infinity Learn

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon