Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6

Q.

Foralln1,let

f(n)=k=1n1sin((2k1)π2n)cos2((k1)π2n)cos2(kπ2n)

see full answer

Talk to JEE/NEET 2025 Toppers - Learn What Actually Works!

Real Strategies. Real People. Real Success Stories - Just 1 call away
An Intiative by Sri Chaitanya

a

limnf(n)n3=4π3

b

f(3)=6

c

limnf(n)n3=8π3

d

f(3)=4

answer is B, C.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

By the double angle and sum-product identities for cosine, we have
2cos2((k1)π2n)2cos2(kπ2n)=cos((k1)πn)cos(kπn)
=2sin((2k1)π2n)sin(π2n)
and it follows that the summand in  f(n) can be written as 
1sin(π2n)(1cos2((k1)π2n)+1cos2(kπ2n)).
Thus the sum telescopes and we find that
f(n)=1sin(π2n)(1+1cos2((n1)π2n))=1sin(π2n)+1sin3(π2n).
Finally, since limx0sinxx=1,wehave
 limn(nsinπ2n)=π2,andthuslimnf(n)n3=8π3.
 

Watch 3-min video & get full concept clarity

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon