Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5

Q.

For any increasing sequence of real numbers a1,a2,a3,... let us denote A as a1,a2,a3,a4,..., and a sequence ΔA is defined as a2a1,a3a2,a4a3,........ Suppose that all of the terms of the sequence Δ(ΔA) are 1 and that a19=a92=0. Then the sum of digit(s) of a3 is M, then the value of [M2] is ____, where [.] is greatest integer function.

see full answer

Talk to JEE/NEET 2025 Toppers - Learn What Actually Works!

Real Strategies. Real People. Real Success Stories - Just 1 call away
An Intiative by Sri Chaitanya

answer is 5.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

detailed_solution_thumbnail

Suppose that the first term of the sequence ΔA is d then
ΔA={d,d+1,d+2,.......(d+(n1))} 
Hence A=(a1,a1+d,a1+d+(d+1)),  
a1+d+(d+1)+(d+2)...........)
an=a1+(n1)d+12(n1)(n2) 
so an is a quadratic polynomial in n.
so an=(nα)(nβ)2   
Since a19=a92=0 we must have an=12(n19)(n92)  
So a3=12(319)(392)=712 

Watch 3-min video & get full concept clarity

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon