Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

For any integer  k,  αk=coskπ7+isinkπ7 ,where i=1  . The value of expression k=112αk+1αkk=13α4k1α4k2 is 

 

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

answer is 4.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

αk=cos2kπ14+isin2kπ14=ei2πk14

k=112ei2(k+1)π14ei2kπ14k=13ei2(4k1)π14ei2(4k2)π14=k=112ei2π141k=13ei2π141=123=4

The expression has a geometric meaning.αk+1αk is the side length of a polygon having 14 sides as αks are 14 th roots of unity.

The expression =123=4

Recall, αk=coskπ7+isinkπ7=cos2πk14+isin2kπ14

 

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring
For any integer  k,  αk=cos⁡kπ7+isin⁡kπ7 ,where i=−1  . The value of expression ∑k=112 αk+1−αk∑k=13 α4k−1−α4k−2 is