Q.

 For non-negative integers s and r, let sr=s!r!(sr)! if rs0 if r>s For positive integers m and n , 

 Let g(m,n)=p=0m+nf(m,n,p)n+ppwhere for any nonnegative integer p,f(m,n,p)=i=0pmin+ipp+npi

 Then which of the following statements is/are TRUE? 

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

a

g(m,n)=g(n,m) for all positive integers m,n

b

g(m,n+1)=g(m+1,n) for all positive integers m,n

c

g(2m,2n)=(g(m,n))2 for all positive integers m,n

d

g(2m,2n)=2g(m,n) for all positive integers m,n

answer is A, B, D.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

solving

f(m,n,p)=i=0pmCin+iCpp+nCp-inow , mCin+iCpp+nCpi= mCi(n+i)!p!(np+i)!×(n+p)!(pi)!(n+i)!= mCi×(n+p)!p!×1(np+i)!(pi)!

= mCi×(n+p)!p!n!×n!(np+i)!(pi)!= mCin+pCpnCpi mCinCpi=m+nCpf(m,n,p)=n+pCpm+nCpf(m,n,p) n+pCp=m+nCp Now g(m,n)=p=0m+nf(m,n,p) n+pCpg(m,n)=p=0m+nm+nCpg(m,n)=2m+n

 (A) g(m,n)=g(n,m)

 (B) g(m,n+1)=2m+n+1

g(m+1,n)=2m+1+n

 (D) g(2m,2n)=22m+2n=2m+n2=(g(m,n))2

Watch 3-min video & get full concept clarity
score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon