Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

For the hyperbola H : x2-y2=1 and the ellipse

E : x2a2+y2b2=1, a>b>0, let the (1) eccentricity of E be reciprocal of the eccentricity of H, and (2) the line y=52x+K be a common tangent of E and H. Then 4a2+b2 is equal to ____________.

see full answer

High-Paying Jobs That Even AI Can’t Replace — Through JEE/NEET

🎯 Hear from the experts why preparing for JEE/NEET today sets you up for future-proof, high-income careers tomorrow.
An Intiative by Sri Chaitanya

answer is 3.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

eE=1-b2a2, eH=2 If eE=1eH a2-b2a2=12 2a2-2b2=a2 a2=2b2 and y=52x+k is tangent to ellipse and  hyperbola then K2=a2×52+b2=32 6b2=32b2=14and a2=12 4a2+b2=3

Watch 3-min video & get full concept clarity

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
For the hyperbola H : x2-y2=1 and the ellipseE : x2a2+y2b2=1, a>b>0, let the (1) eccentricity of E be reciprocal of the eccentricity of H, and (2) the line y=52x+K be a common tangent of E and H. Then 4a2+b2 is equal to ____________.