Q.

For what value of n, does the system of linear equations

2x+3y=7,(n1)x+(n+2)y=3n   have an infinite number of solutions?

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

a

3

b

4

c

5

d

7 

answer is D.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

It is given that the pair of linear equations 2x+3y=7   and (n1)x+(n+2)y=3n   have infinite number of solutions. We need to find the value of k.
A system of linear equations a 1 x+ b 1 y+ c 1 =0   and a 2 x+ b 2 y+ c 2 =0   has infinite solutions when a 1 a 2 = b 1 b 2 = c 1 c 2  .
From equations 2x+3y=7   and (n1)x+(n+2)y=3n  , we have,
a 1 =2, b 1 =3, c 1 =7   and a 2 =(n1), b 2 =(n+2), c 2 =3n  
Thus, putting the values in the condition we have,
2 n1 = 3 n+2 = 7 3n   On comparing we have,
2 n1 = 3 n+2 2(n+2)=3(n1) 2n+4=3n3 3n2n=4+3 n=7  
Thus, the value of n is 7.
Therefore, option 4 is correct.
 
Watch 3-min video & get full concept clarity
score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon