Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8

Q.

For xR, let the function y(x) be the solution of the differential equation dydx+12y=cosπ12x;y0=0

Then, which of the following statements is/are TRUE?

see full answer

High-Paying Jobs That Even AI Can’t Replace — Through JEE/NEET

🎯 Hear from the experts why preparing for JEE/NEET today sets you up for future-proof, high-income careers tomorrow.
An Intiative by Sri Chaitanya

a

y(x) is an increasing function

b

y(x) is a decreasing function

c

There exists a real number β such that the line y=β intersects the curve y=y(x) at infinitely many points

d

y(x) is a periodic function 

answer is C.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

dydx+12y=cos(π12x)

Linear D.E. I.F =e12.dx=e12x.

Solution of DE y.e12x=e12x.cos(π12x)dx

y.e12x=e12x(12)2+(π12)2(12cosπ12x+π12sinπ12x)+C

y=(12)(12)4+π2((12)2cos(πx12)+πsin(πx12))+Ce12x

Given y(0) = 0 0=12124+π2(122+0)+CC=123124+π2

y=12124+π2[(12)2cos(πx12)+πsin(πx12)122.e12x]

Now dydx=12124+π2[12πsin(πx12)+π212cos(πx12)min.value+123e12x]

(144π2+π4144=12π1+π2124)dydx>0x0 & may be negative/positive for x > 0
So, f (x) is neither increasing nor decreasing For some βR,y=β intersects y=f(x) at infinitely many points So option C is correct

Watch 3-min video & get full concept clarity

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon