Q.

For xR, let the function y(x) be the solution of the differential equation dydx+12y=cosπ12x;y0=0

Then, which of the following statements is/are TRUE?

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

a

There exists a real number β such that the line y=β intersects the curve y=y(x) at infinitely many points

b

y(x) is a periodic function 

c

y(x) is a decreasing function

d

y(x) is an increasing function

answer is C.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

dydx+12y=cos(π12x)

Linear D.E. I.F =e12.dx=e12x.

Solution of DE y.e12x=e12x.cos(π12x)dx

y.e12x=e12x(12)2+(π12)2(12cosπ12x+π12sinπ12x)+C

y=(12)(12)4+π2((12)2cos(πx12)+πsin(πx12))+Ce12x

Given y(0) = 0 0=12124+π2(122+0)+CC=123124+π2

y=12124+π2[(12)2cos(πx12)+πsin(πx12)122.e12x]

Now dydx=12124+π2[12πsin(πx12)+π212cos(πx12)min.value+123e12x]

(144π2+π4144=12π1+π2124)dydx>0x0 & may be negative/positive for x > 0
So, f (x) is neither increasing nor decreasing For some βR,y=β intersects y=f(x) at infinitely many points So option C is correct

Watch 3-min video & get full concept clarity
score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon