Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

From any point on the conic x2a2+y2b2=4, tangents are drawn to the conic x2a2+y2b2=1, then locus of the normal at the points of contact meet on the conic and the equation of the  conic  is 

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

a2x2+b2y2=14(a2+  b2)2

b

a2x2b2y2=4(a2b2)2

c

a2x2+b2y2=4(a2b2)2

d

a2x2+b2y2=14(a2b2)2

answer is B.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

Equations of concentric ellipses are 
      x2a2+y2b2=4……………(1)
       x2a2+y2b2=1……………(2)
Points P(acosα,bsinα)  and Q(acosβ,bsinβ) on the (2) ellipse.  Equations of tangents at P and Q are  
    xacosα+ybsinα=1………(3)
  xacosβ+ybsinβ=1 ………..(4)
Point of intersection of (3) & (4) is 
Question Image

A{acos(α+β2)cos(αβ2),bsin(α+β2)cos(αβ2)}

This point A satisfy (1)

cos2(α+β2)cos2(αβ2)+sin2(α+β2)cos2(αβ2)=4 1=4cos2(αβ2),12=1+cos(αβ) cos(αβ)=12  (5)

Equations of normal PR & QR are  axsecαbycosecα=a2b2  &  axsecβbycosecβ=a2b2

Or axsinαbycosα=(a2b2)sinαcosα  (6) axsinβbycosβ=(a2b2)sinβcosβ (7)

Multiplying (6) by cosβ & (7) by cosα and subtracting, we get 

axsin(αβ)=(a2b2)cosαcosβ(sinαsinβ)

axa2b2=cosαcosβ.2cos(α+β2)sin(αβ2)2sin(αβ2)cos(αβ2)

=cosαcosβ.cos(α+β2)cos(αβ2) =±2cosαcosβ.cos(α+β2)   (from 5) =±cos(α+β2){cos(α+β)+cos(αβ)} axa2b2=±cos(α+β2){cos(α+β)12}  Using (5) a2x2(a2b2)2=cos2(α+β2){cos(α+β)12}2

Similarly

b2y2(a2b2)2=sin2(α+β2){cos(α+β)+12}2 a2x2(a2b2)2+b2y2(a2b2)2=cos2(α+β)+14cos2(α+β)

Hence the required locus is  a2x2+b2y2=14(a2b2)2

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring