Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Given four unit vectors a,b,c and d. The vectors a,b and c are coplanar but not collinear pair by pair and vector d is not coplanar with vectors a,b and c and (a,  b)=(b,  c)=π3,(d,  a)=α and (d,  b) =β,  if(d,  c) =cos1(mcosβ+ncosα) then |mn| is: ( (x,y)=θ represents the angle between the vector between x and y is θ )

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

2

b

1

c

0

d

4

answer is A.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

detailed_solution_thumbnail

2

Reason: Since a,b,ca,b,c are unit and coplanar with (a,b)=(b,c)=π/3(a,b)=(b,c)=\pi/3 and dd is arbitrary, write
c=mb+nac= m\,b+n\,a.
Using bc=12b\cdot c=\tfrac12 and c2=1|c|^2=1 with ab=12a\cdot b=\tfrac12:

m+n2=12,m2+n2+mn=1m+\frac{n}{2}=\frac12,\qquad m^2+n^2+mn=1

Solve to get n=±1n=\pm1 and m=1n2m=\frac{1-n}{2}. The pairwise non-collinearity rejects c=ac=a (m=0,n=1)(m=0,n=1), so m=1,n=1m=1,n=-1 and c=bac=b-a.

Thus

cos(d,c)=dc=mcosβ+ncosα=cosβcosα,\cos(d,c)=d\cdot c = m\cos\beta+n\cos\alpha=\cos\beta-\cos\alpha,

so mn=1(1)=2.|m-n|=|1-(-1)|=2..

Question Image

 

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring