Q.

Given that a1,a2,a3 is an A.P in that order, a1+a2+a3=15;b1, b2, b3 is a G.P. in that order, and b1 b2 b3=27. If a1+b1,a2+b2,a3+b3 are positive integers and form a G.P. in that order, then

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

a

maximum possible value of a3 is 15(a1,a2,a3 are positive integer and unequal)

b

maximum possible value of a3 is 4+55+7612

c

maximum possible value of a3 is 9+55+7612

d

minimum possible value of a3 is 3(a1,a2,a3 are positive integer and unequal)

answer is A, B, C.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

Let a1=5d,a2=5,a3=5+d,b1=3q, b2=3, b3=3q, then the given conditions indicate that 5d+3q and 5+d+3q are all positive integers and (5d+3q)(5+d+3q)=64.

It is easy to check that for getting maximum positive d, there are only four possibilities for (5d+3q,5+d+3q):(1,64),(2,32),(4,16) and (8, 8).
(i) By solving the system of equations corresponding to (1,64), it follows that

 3q+3q=55q1,2=55±7616, d1,2=4+3q1,2  dmax=4+3.655761=4+55+7612

(ii) By solving the system of equations corresponding to (2,32), it follows that

 q+1q=8q1,2=8±602=4±15,d1,2=3+3q1,2  dmax=3+3415=15+315.

(iii) By solving the system of equation corresponding to (4,16), it follows that

3q+3q=10q=3 or 13, d1,2=1+3q1,2=2 or 10dmax=10  
(iv) By solving the system of equations corresponding to (8,8), it follows that q+1q=2q=1, d=0.
In summary, dmax=4+55+7612, hence the maximum possible value of a3 is 9+55+7612 

Watch 3-min video & get full concept clarity

tricks from toppers of Infinity Learn

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
Given that a1,a2,a3 is an A.P in that order, a1+a2+a3=15;b1, b2, b3 is a G.P. in that order, and b1 b2 b3=27. If a1+b1,a2+b2,a3+b3 are positive integers and form a G.P. in that order, then