Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6

Q.

How do you find the derivative of the function sin3(2x)?

see full answer

Talk to JEE/NEET 2025 Toppers - Learn What Actually Works!

Real Strategies. Real People. Real Success Stories - Just 1 call away
An Intiative by Sri Chaitanya

a

6sin2(2x)cos(2x)

b

6sin2(2x)cos2(2x)

c

6sin3(2x)cos(2x)

d

6sin2(2x)cos(x) 

answer is A.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

Let’s assume sin2x=z and 2x=y.
So, p=sin3(2x)p=z3                                  ……. 1
So, let us differentiate both sides of equation (1) w.r.t  x.
From the chain rule we get,
d(p)dx=d(z3)dx
dpdx=d(z3)dz×dzdx  dpdx=3z2×dzdx     [d(xn)dx=nxn-1]
dpdx=3sin2(2x)×d(sin y)dx      ……… 2          [Since, sin2x=z and 2x=y]
Let's Apply chain rule in equation (2), we get
dpdx =3sin2(2x)×d(sin y)dy×dydx
dpdx =3sin2(2x)× cos y×dydx             [d(sin x)dx= cos x]
Let’s put 2x=y,
dpdx =3sin2(2x)× cos (2x)×d(2x)dx
dpdx =3sin2(2x)× cos (2x)×2          [d(ax)dx= a]
dpdx= 6sin2(2x)cos(2x)
 
Watch 3-min video & get full concept clarity

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon