Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

i)   Discuss Doppler’s effect in electromagnetic waves. 

ii)  Consider two coherent sources S1 and S2producing monochromatic waves to produce an interference pattern. Let the displacement of the wave produced by S1be given by y1=acoswt and the displacement byS2 be y2=acos(wt+ϕ).Find out the expression for the amplitude of the resultant displacement at a point and show that the intensity at that point will be Hence, establish the conditions for constructive and destructive interference.

                                                          OR

i) A ray PQ of light is incident on the face AB of a glass prism ABC (as shown in the figure) and emerges out of the face AC. Trace the path of therapy. Show that,
i+e=A+δ

Question Image

 

 

 

 

 

where, d and e denote the angle of deviation and angle of emergence, respectively. Plot a graph showing the variation of the angle of deviation as a function of angle of incidence. State the condition under which δis minimum. 

(ii) Find out the relation between the refractive index μ of the glass prism and A for the case, when the angle of prism A is equal to the angle of minimum deviation δm . Hence, obtain prism A of the refractive index for angle of prism A = 60°

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

answer is 1.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

i)According to this effect, whenever there is a relative motion between a source of light and observer, the apparent frequency of light received by observer is different from the true frequency of light emitted from the source of light. Astronomers call the increase in wavelength due to Doppler effect as red shift, since a wavelength in the middle of the visible region of spectrum moves towards the red end of the spectrum. When waves are received from a source moving towards the observer, there is an apparent decrease in wavelength, this is referred to as blue shift. The fractional change in frequency is given by

vv=νradialc

ii) Given, the displacements of two coherent sources y1=a cos ωt and y2=a cos (ωt+ϕ)  By principle of superposition,                          y=y1+y2=a cos ωt+a cos (ωt+ϕ)                          y=a cos ωt+a cos ωt cosϕ-asin ωt sin ϕ                          y=a(1+cos ϕ)cos ωt+(-asin ϕ)sin ωt Let a(1+cosϕ)=Acos θ and        asin ϕ =A sin θ                    y =A cosθ cosωt-A sin θsin ωt                   y =A cos(ωt+θ) Squaring and adding Eqs. (i) and (ii), we get (A cos θ)2+(A sin θ)2=a2(1+cos ϕ)2+(a sin ϕ)2 A2(cos2θ+sin2θ)                                       =a2(1+cos2ϕ+2cosϕ)+a2 sin2ϕ    A2×1=a2+a2+2a2 cosϕ=2a2(1+cos ϕ)             A2=2a22 cos2ϕ2=4a2 cos2ϕ2 If I is the resultant intensity, then I=4a2 cos2ϕ2.

From constructive interference, cosϕ2=±1                 ϕ2=2πϕ=2 For destructive interference,                 cosϕ2=0                  ϕ2=(2n+1)π2                        ϕ=(2n+1)π     

OR

Let PQ and RS are incident and emergent rays and incident ray get deviated by δ by the prism. i.e.,       TMS=δ Let δ1 and δ2 are deviation produced at refractions taking place at AB and AC, respectively

Question Image

 

 δ=δ1+δ2=(i-r1)+(e-r2)         =(i+e)-(r1+r2)                                               (i) But in FNR,                      QNR+RQN+QRN=180° or                 QNR=180°-(r1+r2)                       (ii) In               QARN, AQN and ARN are right angles. So,               QNR=180°-A                               (iii) where, A is angle of prism. From Eqs. (ii) and (iii), we have                        A=r1+r2                                            (iv) From Eqs. (i) and (iv), we have                              δ=(i+e)-A                                      (v) or              i+e=A+δ (ii) i-δ graph is shown in the figureQuestion Image

The conditions for the angle of minimum deviation are given as below. (a) Angle of incidence i and angle of emergence e are equal.       i.e.,            r=e (b) In equilateral prism, the refracted ray is parallel to base of prism. (c) The incident and emergent rays are bent on same angle from refracting  surfaces of the prism. i.e.     r1=r2 For minimum deviation position, Putting r=r1=r2 and i=e in Eq. (iv)                             2r=Ar=A2             (vi) From Eq. (i), δm=2i-A                                   i=A+δm2               (vii) Refractive index of material of prism,                      μsin isin r  From Eqs. (vi) and (vii), we get                  μ=sinA+δm2sin (A/2) i) As per the question, Angle of prism, A=Angle of minimum deviation, δm i.e.                       A=δm                             (viii) Substituting the value of δm from Eq. (viii) we get                        μ=sinA+A2sin(A/2)                        μ=sin Asin(A/2)                        μ=2sin(A/2).cos(A/2)sin(A/2)                        μ=2cos(A/2) This is the required relation between refractive index of the glass prism and angle of prism. Since, A=60°                                                                    (given)     μ=2 cos60°2     μ=2 cos 30°     μ=2×32     μ=3     μ=1.732    

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring