Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

i) If A=3    41    1 then for any integer n1 Show that An=1+2n4nn12n

ii) If A=cosθsinθsinθcosθ then show that for all the positive integers n, An=cosnθsinnθsinnθcosnθ

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

answer is 1.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

using mathematical indication 

 Let n=1 then A1=1+2(1)4(1)112(1)=3    41    1=A

s(1) is true

Assume that s(k) is true  i.e., Ak=1+2k4kk12k

Now, he have to show that s(k + 1) is true Ak+1=AkA=1+2k4kk12k3411

=3(1+2k)4k(1)    4(1+2k)4k(1)k(3)+(12k)(1)    4(k)+(12k)(1)

=3+6k4k    48k+4k3k+12k    4k1+2k

=3+2k44k1+k12k=1+2(k+1)4(k+1)(k+1)12(k+1)

s(k+1) is true. The given statement is true nN

We solve this problem by using the principle of mathematical induction

Consider statement S(n):An=cosnθsinnθsinnθcosnθ

Since A=cosθsinθsinθcosθ

p(n) is true for n=1

Assume that S(k) is true for kN

then Ak=coskθsinkθsinkθcoskθ

Now, we show that s(k+1) is true

Ak+1=Ak×A=coskθsinkθsinkθcoskθcosθsinθsinθcosθ

=coskθcosθsinkθsinθcoskθsinθ+sinkθcosθsinkθcosθcoskθsinθsinkθsinθ+coskθcosθ

=cos(kθ+θ)sin(kθ+θ)sin(kθ+θ)cos(kθ+θ)

=cos(k+1)θsin(k+1)θsin(k+1)θcos(k+1)θ

Therefore S(n) is true for n = k + 1 Hence, by the principle of methematical induction S(n) is true for all positive integeral values of n.

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring