Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5

Q.

If α and β are the zeros of the polynomial f(x) = 5x2+4x−9 then evaluate the following: 3-β3


see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

a

874125

b

814125

c

894125

d

854125 

answer is D.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

The given polynomial is f(x)= 5x2+4x−9 which is a quadratic equation therefore it has two roots α and β.
Now, if  ax2+bx +c  is a quadratic equation and it has two roots α and β then we can write α+β=−ba and αβ=ca. Therefore, for the quadratic equation
 f(x)= 5x2+4x−9  we can write α+β=−45  and αβ=−95.
We know that (a-b)3=a3-b3−3ab(a−b) then we can write
 (α-β)3= α3-β3−3αβ(α−β)
α3-β3 =  (α-β)3+3αβ(α−β)
We have to find the value of (α−β)
Now, we know that (α+β)2=α2+β2+2αβ
α2+β2=(α+β)2−2αβ
α2+β2=(-45)2−2(-95)
Now, simplify the above equation
α2+β2=1625+185=10625
Now, we know that (α-β)2=α2+β2-2αβ . Substitute the value in the equation
(α-β)2=10625−2(-95)= 10625+185
(α-β)2=19625
Hence, from the above calculation we got the value of α−β=19625=145
Now, substitute the value of α−β=145 in the equation
 α3-β3= (α-β)3+3αβ(α−β)
α3-β3=(145)3+3(-95)( 145)
α3-β3=274412537825=2744-1890125
Therefore, we got  α3-β3=854125
Hence, the correct option is (4).
 
Watch 3-min video & get full concept clarity

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
If α and β are the zeros of the polynomial f(x) = 5x2+4x−9 then evaluate the following: ∝3-β3