Q.

If α,β  are roots of 375x225x2=0  and Sn=αn+βn , then limn  r=1nSr  is

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

a

7116

b

112

c

29358

d

None of these

answer is B.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

The given equation is 375x225x2=0 

α,β are the roots of the equation, then

Sum of the roots : α+β=25375=115  and

Product of the roots : αβ=2375

Given that, Sn=αn+βn

 

                    r=1nSr=(α+α2+.....+αn)+(β+β2+....+βn)

  limn r=1nSr=(α+α2+..... to )+(β+β2+..... to  )

                     =α1α+β1β                 (α+α2+..... to =α1α   β+β2+....... to  =β1β)  

                     =ααβ+βαβ(1α)(1β)=(α+β)2αβ1αβ+αβ

                     =115+437511152375=25+4375252=29348=112

 

Watch 3-min video & get full concept clarity
score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon