Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

If 0π(sinx+sin2x+sin3x)2+(cosx+cos2x+cos3x)2dx  has the value equal to (πk+w) where k and ω are positive integers, find the value of (k2+w2)?


see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

153

b

144

c

150

d

145 

answer is A.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

According to the problem, we are given that the value of definite integral
0π(sinx+sin2x+sin3x)2+(cosx+cos2x+cos3x)2dx is equal to (πk+w) . We need to find the value of (k2+w2) .
Let us assume I=0π(sinx+sin2x+sin3x)2+(cosx+cos2x+cos3x)2dx
We know that  (a+b+c)2=a2+b2+c2+2ab+2bc+2ca
I=0π(sin2x+sin22x+sin23x+2sinxsin2x+2sin2xsin3x+2sin3xsinx)2dx+(cosx+cos2x+cos3x)2Similarly, we get (cosx+cos2x+cos3x)2=cos2x+cos22x+cos23x+2cosxcos2x+2cos2xcos3x+2cos3xcosx
We know that sin2α+cos2α=1.
I=0π1+1+1+2sinxsin2x+2sin2xsin3x+2sin3xsinx+2cosxcos2x+2cos2xcos3x+2cos3xcosxWe know that  2sinAsinB=cos(B−A)−cos(A+B) and 2cosAcosB=cos(A+B)+cos(A−B)
So, we get 2sinAsinB+2cosAcosB=cos(B−A)+cos(A−B). We know that cos(−x) = cosx⇒2sinAsinB+2cosAcosB=2cos(A−B)
I=0π3+2coscos 2x-x +2coscos 3x-2x +2coscos 3x-x dx
I=0π3+2coscos x +2coscos x +2coscos 2x dx
I=0π3+4coscos x +2coscos 2x dx
We know that cos2x=2cos2x −1
I=0π3+4coscos x +2(2cos2x-1)  dx
I=0π3+4coscos x +4cos2x-2 dx
I=0π4cos2x+4coscos x +1 dx
I=0π(2coscos x +1)2 dx
We know that x2=|x|.
I=0π|2cosx+1|dx
Let us find the interval at which 2cosx+1≤0.
2cosx≤−1.
cosx-12.
x[2π3,π]
So, we get the definite integral as
 I=02π32cosx+1dx+2π3π-2cosx+1dx
I=02π32cosx+1dx-2π3π2cosx+1dx.
We know that ∫cos x dx=sinx+C, ∫adx=ax+C and abf'xdx=[fx]ab=fb-f(a)I=[2sinx+x]02π3-[2sinx+x]2π3π
I=(2sin2π3+2π3)−(2sin0+0)−((2sinπ+π)−(2sin2π3+2π3))
I = (2(32)+ 2π3)−(0+π)+(2(32)+ 2π3)
I=23+4π3-π
I=π3+12
Let us compare the obtained answer with (πk+w). So, we get k=3 and ω=12.
Now, let us find the value of (k2+w2).
So, we have k2+w2=32+122
k2+w2=9+144
k2+w2= 153.
So, the correct answer is “Option 1”.
 
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring