Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

If   α1,α2 and  α3are the three values of a which satisfy the equation 0π/2(sinx+αcosx)3dx4απ20π/2xcosxdx=2  then the value of  1000(α12+α22+α32) is__________

see full answer

High-Paying Jobs That Even AI Can’t Replace — Through JEE/NEET

🎯 Hear from the experts why preparing for JEE/NEET today sets you up for future-proof, high-income careers tomorrow.
An Intiative by Sri Chaitanya

answer is 5250.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

 0π/2(sinx+αcosx)3dx4απ20π/2xcosxdx=2
Let  VI1=0π/2(sinx+αcosx)3dx
 =0π/2(sin3x+α3cos3x+3αsin2xcosx+3α2sinxcos2x)dx+3α20π/2sinxcos2xdx(sinx=tcosxdx=dt;01t2dt)
 =23+α3(23)+3α01t2dt+3α201t2dt
 =23(1+α3)+α+α2
 =23+2α33+α+α2
 
 I1=2α33+α2+α+23
 I2=0π/2x(I).cosx(II)dx=xsinx|0π/20π/2sinxdxI2=xsinx+cosx|0π/2
 
 I2=π21=π22
 
 I=2α33+α2+α+234απ2.π22
 2α33+α2α+23=2
 2α3+3α23α+2=6
2α3+3α23α4=0 
 α1+α2+α3=32
 α1α2=32
 α12=94+62=214
1000α12=1000×214=250×21=5250

Watch 3-min video & get full concept clarity

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon