Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5

Q.

If   α1,α2 and  α3are the three values of a which satisfy the equation 0π/2(sinx+αcosx)3dx4απ20π/2xcosxdx=2  then the value of  1000(α12+α22+α32) is__________

see full answer

Talk to JEE/NEET 2025 Toppers - Learn What Actually Works!

Real Strategies. Real People. Real Success Stories - Just 1 call away
An Intiative by Sri Chaitanya

answer is 5250.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

 0π/2(sinx+αcosx)3dx4απ20π/2xcosxdx=2
Let  VI1=0π/2(sinx+αcosx)3dx
 =0π/2(sin3x+α3cos3x+3αsin2xcosx+3α2sinxcos2x)dx+3α20π/2sinxcos2xdx(sinx=tcosxdx=dt;01t2dt)
 =23+α3(23)+3α01t2dt+3α201t2dt
 =23(1+α3)+α+α2
 =23+2α33+α+α2
 
 I1=2α33+α2+α+23
 I2=0π/2x(I).cosx(II)dx=xsinx|0π/20π/2sinxdxI2=xsinx+cosx|0π/2
 
 I2=π21=π22
 
 I=2α33+α2+α+234απ2.π22
 2α33+α2α+23=2
 2α3+3α23α+2=6
2α3+3α23α4=0 
 α1+α2+α3=32
 α1α2=32
 α12=94+62=214
1000α12=1000×214=250×21=5250

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon