Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

If a 2 b 2 sinθ+2abcosθ= a 2 + b 2 ,   then what is the value of tanθ?  


see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

a 2 b 2 2ab  

b

a 2 + b 2 2ab  

c

a 2 b 2 2a  

d

a 2 + b 2 2b    

answer is A.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

Given that, a 2 b 2 sinθ+2abcosθ= a 2 + b 2  .
Dividing both sides by cosθ  , we get,
a 2 b 2 sinθ+2abcosθ= a 2 + b 2   a 2 b 2 sinθ+2abcosθ cosθ = a 2 + b 2 cosθ   Splitting terms, we get,
a 2 b 2 sinθ cosθ + 2abcosθ cosθ = a 2 + b 2 cosθ   a 2 b 2 tanθ+2ab= a 2 + b 2 secθ   …(1)  Since tanθ= sinθ cosθ ,secθ= 1 cosθ  
Squaring both sides in (1), we get,
a 2 b 2 tanθ+2ab 2 = a 2 + b 2 secθ 2   a 2 b 2 2 tan 2 θ+4 a 2 b 2 +4ab a 2 b 2 tanθ= a 2 + b 2 2 sec 2 θ [ (a+b) 2 = a 2 +2ab+ b 2 ]    a 2 b 2 2 tan 2 θ a 2 + b 2 2 sec 2 θ+4 a 2 b 2 +4ab a 2 b 2 tanθ=0  
Applying the identity from 1+ tan 2 θ= sec 2 θ  , we get, a 2 b 2 2 tan 2 θ a 2 + b 2 2 (1+ tan 2 θ)+4 a 2 b 2 +4ab a 2 b 2 tanθ=0   a 2 b 2 2 tan 2 θ a 2 + b 2 2 a 2 + b 2 2 tan 2 θ+4 a 2 b 2 +4ab a 2 b 2 tanθ=0  
Using the first and third terms together, we get, tan 2 θ a 2 b 2 2 a 2 + b 2 2 a 2 + b 2 2 +4 a 2 b 2 +4ab a 2 b 2 tanθ=0  
Expanding the first term and canceling terms, we get, 4 a 2 b 2 tan 2 θ a 2 + b 2 2 +4 a 2 b 2 +4ab a 2 b 2 tanθ=0  
Opening whole square terms and simplifying, we get,Question Image a 2 + b 2 2ab= (ab) 2   gives 4 a 2 b 2 tan 2 θ4ab a 2 b 2 tanθ+ a 2 b 2 2 =0  …(2)
Solving (2) by quadratic formula to find the value of tanθ   with the help of a x 2 +bx+c=0   then x 1,2 = b± b 2 4ac 2a   , we get,
Comparing 4 a 2 b 2 tan 2 θ4ab a 2 b 2 tanθ+ a 2 b 2 2 =0   with standard quadratic equation, we get,
a=4 a 2 b 2 b=4ab a 2 b 2 c= a 2 b 2 2   Applying the quadratic formula, we get, tan θ 1,2 = 4ab a 2 b 2 ± 4ab a 2 b 2 2 4 4 a 2 b 2 a 2 b 2 2 8 a 2 b 2   tan θ 1,2 = 4ab a 2 b 2 ± 16 a 2 b 2 a 2 b 2 2 16 a 2 b 2 a 2 b 2 2 8 a 2 b 2   Canceling the term under the square root, we get,
tan θ 1,2 = 4ab a 2 b 2 ± 0 8 a 2 b 2   tanθ= 4ab a 2 b 2 8 a 2 b 2   tanθ= 4ab a 2 b 2 2ab 8 a 2 b 2   tanθ= a 2 b 2 2ab   Thus, tanθ= a 2 b 2 2ab .  
Hence, option 1 is correct.
 
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring