Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5

Q.

If a curve y = f(x) passing through the point (1, 2) is the solution of the differential equation 

2x2dy=2xy+y2dx then f12 is  equal to 

see full answer

Talk to JEE/NEET 2025 Toppers - Learn What Actually Works!

Real Strategies. Real People. Real Success Stories - Just 1 call away
An Intiative by Sri Chaitanya

a

11loge2

b

1+loge2

c

11+loge2

d

11+loge2

answer is C.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

The given differential equation is 

2x2dy=2xy+y2dxdydx=yx+y22x21y2dydx+1x1y=-12x2dvdx+1xv=12x2, where v=1y

This is a linear differential equation with  I. F. e1xdx=elogex=x

Multiplying both sides by x and integrating, we obtain 

vx=12logx+Cxy=12logx+C            (i)

This is the required curve. It passes through  (1, 2)

 12=C

Putting C=12 in (i), we obtain 

xy=12logx+122xy=1logxy=2x1logx f(x)=2x1logxf12=11+logc2

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
If a curve y = f(x) passing through the point (1, 2) is the solution of the differential equation 2x2dy=2xy+y2dx then f12 is  equal to