Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

If a line makes angles 90°, 135°, 45° with the x, y and z axes respectively, find its direction cosines.
                                                             OR
Find the vector equation of the line which passes through the point (3, 4, 5) and is parallel to the vector 2î + 2ĵ  3 .

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

answer is 1.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

Let direction cosines of the line be l, m and n, Given, α=90°, β=135° and γ=45° Then, l=cos α=cos 90°=0 m=cos β=cos 135°=-12 and n=cos γ=cos 45°=12 Hence, the direction cosines of a line are 0,-12and12

OR

Equation of a line passing through a point with position vector a and parallel to vector  b is                  r=a+λb Since, line passes through (3,4,5)              b=3i^+4j^+5k^ Since, line is parallel to 2i^+2j^-3k^               b=2i^+2j^-3k^ Equation of line is  r=a+λb, i.e.,             r=(3i^+4j^+5k^)+λ2i^+2j^-3k^ which is the required vector equation.

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring