Q.

If a ray makes the angles α,β,γ and δ with four diagonals of a cube then prove that cos2α+cos2β+cos2γ+cos2δ=4/3

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

Let ‘a’ be the length of each side of cube. Let one vertex of the cube is origin ‘O’ and the coordinate axes along the 3 edges OA¯,OB¯ and OC¯ are passing through origin. The 4 diagonals are OG¯,AF¯,CE¯ and BD¯
Question Image 
O=(0,0,0),A(a,0,0),B(0,a,0),C(0,0,a)D=(a,0,a),E(a,a,0),F(0,a,a),G(a,a,a)
 Let (l,m,n) are d.c's of given ray 
d.rs of OG¯=x2x1,y2y1,z2z1=(a0,a0,a0)=(a,a,a)
 dc's of OG¯
=aa2+a2+a2,aa2+a2+a2,aa2+a2+a2=a3a,a3a,a3a=13,13,13
 dr's of AF¯=(0a,a0,a0)=(a,a,a)
 dc's of AF¯
=aa2+a2+a2,aa2+a2+a2,aa2+a2+a2=a3a,a3a,a3a=13,13,13
 dr's of BD¯=(a0,0a,a0)=(a,a,a)
 dc's of BD¯
=aa2+a2+a2,aa2+a2+a2,aa2+a2+a2
=a3a,a3a,a3a=13,13,13
 dr's of CE¯=(a0,a0,0a)=(a,a,a)
 dc's of CE¯
=aa2+a2+a2,aa2+a2+a2,aa2+a2+a2=a3a,a3a,a3a=13,13,13
 Let α,β,γ,δ are the angles made by the ray 
(l,m,n) with OG¯,AF¯,BD¯,CE¯ respectively. Then 
cosα=l1l2+m1m2+n1n2=l13+m13+n13=l+m+n3
Similarly, we get cosβ=l+m+n3
cosγ=lm+n3 and cosδ=l+mn3cos2α+cos2β+cos2γ+cos2δ=(l+m+n)23+(l+m+n)23+(lm+n)23+(l+mn)23=4l2+4m2+4n23=4l2+m2+n23=43l2+m2+n2=1

Watch 3-min video & get full concept clarity

tricks from toppers of Infinity Learn

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon