Book Online Demo
Check Your IQ
Try Test
Courses
Dropper NEET CourseDropper JEE CourseClass - 12 NEET CourseClass - 12 JEE CourseClass - 11 NEET CourseClass - 11 JEE CourseClass - 10 Foundation NEET CourseClass - 10 Foundation JEE CourseClass - 10 CBSE CourseClass - 9 Foundation NEET CourseClass - 9 Foundation JEE CourseClass -9 CBSE CourseClass - 8 CBSE CourseClass - 7 CBSE CourseClass - 6 CBSE Course
Q.
If ABCD is a cyclic quadrilateral, then the value of cos A + cos B + cos C + cos D is:
see full answer
Start JEE / NEET / Foundation preparation at rupees 99/day !!
21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya
a
1
b
0
c
2
d
None of these
answer is B.
(Unlock A.I Detailed Solution for FREE)
Ready to Test Your Skills?
Check your Performance Today with our Free Mock Test used by Toppers!
Take Free Test
Detailed Solution
Step 1: First of all we have to consider the diagram of a cyclic quadrilateral ABCD which is as mentioned below:
Step 2: In cyclic quadrilateral the sum of its two opposite angles are equal to 1800 or π. Hence, we have to consider the two opposite angles A and C,
⇒ A + C = π
⇒ A = π – C .................(1)
Step 3: Multiplying with cosine on both sides of expression (1), we get
⇒ cosA = cos (π−C) ...............(2) Step 4: Now, to solve the expression (2)
⇒ cos A = cosπcosC + sinπsinC
Now, on substituting the values of cosπ = -1, and sinπ = 0
⇒ cosA = (−1) cosC + (0) sinC
⇒ cosA = − cosC + 0
⇒ CosA + cosC = 0 ............(3)
Step 5: Now, consider other two opposite angles B and D,
⇒ B + D = π
⇒ B = π−D .................(4)
Step 6: Multiplying with cosine on both sides of expression (4), we get
⇒ cosB = cos(π−D) ...............(5)
Step 7: Now, to solve the expression (5)
⇒ cosB = cosπcosD + sinπsinD [since cos (A − B) = cosAcosB + sinAsinB]
Now, on substituting the values cosπ = -1, and sinπ = 0, we get
⇒ cosB = (−1) cosD + (0) sinD
⇒ cosB = − cosD + 0
⇒ cosB + cosD = 0 ............(6)
Step 8: Now, we have to add the expressions (3) and (6) to obtain the value of cosA + cosB + cosC + cosD. Hence,
⇒ cosA + cosB + cosC + cosD = 0 + 0
⇒ cosA + cosB + cosC + cosD = 0
Therefore option (2) is correct.
⇒ A + C = π
⇒ A = π – C .................(1)
Step 3: Multiplying with cosine on both sides of expression (1), we get
⇒ cosA = cos (π−C) ...............(2) Step 4: Now, to solve the expression (2)
⇒ cos A = cosπcosC + sinπsinC
Now, on substituting the values of cosπ = -1, and sinπ = 0
⇒ cosA = (−1) cosC + (0) sinC
⇒ cosA = − cosC + 0
⇒ CosA + cosC = 0 ............(3)
Step 5: Now, consider other two opposite angles B and D,
⇒ B + D = π
⇒ B = π−D .................(4)
Step 6: Multiplying with cosine on both sides of expression (4), we get
⇒ cosB = cos(π−D) ...............(5)
Step 7: Now, to solve the expression (5)
⇒ cosB = cosπcosD + sinπsinD [since cos (A − B) = cosAcosB + sinAsinB]
Now, on substituting the values cosπ = -1, and sinπ = 0, we get
⇒ cosB = (−1) cosD + (0) sinD
⇒ cosB = − cosD + 0
⇒ cosB + cosD = 0 ............(6)
Step 8: Now, we have to add the expressions (3) and (6) to obtain the value of cosA + cosB + cosC + cosD. Hence,
⇒ cosA + cosB + cosC + cosD = 0 + 0
⇒ cosA + cosB + cosC + cosD = 0
Therefore option (2) is correct.
Watch 3-min video & get full concept clarity