Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

If α and β are the roots of the equation x2-2x+3=0. Then find the equation whose roots are α-1α+1,β-1β+1.

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

x2-3x+1=0 

b

3x2-2x+1=0

c

3x2-2x-1=0

d

3x2+2x+1=0

answer is C.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

detailed_solution_thumbnail

Given equation: x2-2x+3=0

The roots of the equation are α and β.

We know that, 

The sum of the roots, α+β=-coefficient of xcoefficient of x2 

α+β=-(-2)1

α+β=2

The product of the roots, αβ=constant termcoefficient of x2

αβ=31

αβ=3 

Now, the roots of another equation is α-1α+1,β-1β+1

Here, the sum of roots, α-1α+1+β-1β+1

=(α-1)(β+1)+(α+1)(β-1)(α+1)(β+1)

=αβ+α-β-1+αβ-α+β-1αβ+α+β+1

=2αβ-2αβ+α+β+1

=6-23+2+1

=46

=23 
Product of roots, α-1α+1β-1β+1

=αβ-α-β+1αβ+α+β+1 

=3-2+13+2+1

=26

=13 

Hence, equation, 

x2-(sum of roots)x+product of roots=0 

x2-23x+13=0 

3x2-2x+1=0

Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring