Q.

If  α  and  β(α<β)  are the two roots of the equation 18(log10x)2log10x2(log10x)2=1, then the value of    110((α2β3+1)2α430000α4) is ……….   

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

answer is 10.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

It is given that  α  and  β  are the roots of equation 
 18(log10x)2log10x2[log10x]2=1
Let,  log10x=y
So,  18y2y2(y)2=1
 18y2=y2y2 8y2+2y2y+1=0 6y2+y+1=0 6y2+y1=0 6y2+y1=0 6y2+3y2y1=0 y=13andy=12
Therefore,  log10x=12andlog10x=13
 x=1012orx=101/3x=1101/2orx=101/3
So,  α=1101/2andβ=101/3
Now,  α2β3+1=(1101/2)(101/3)3+1
 =110×10+11+1=2 (α2β3+1)2=22=4
Again,  α4=102
 α4=1100or1α4=100
Now,  110[(α2β3+1)2α430000α4]
110[(2)210030000×1100]
110[400300]=10010=10

Watch 3-min video & get full concept clarity

tricks from toppers of Infinity Learn

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
If  α  and  β(α<β)  are the two roots of the equation 1−8(log10x)2log10x−2(log10x)2=1, then the value of    110((α2β3+1)2α4−30000α4) is ……….