Q.

If  α,β,γ are different from 1 and are the roots of  ax3+bx2+cx+d=0 and (βγ)(γα)(αβ)=25/2 , then the determinant Δ=|α1αβ1βγ1γαβγα2β2γ2|   equals 
 

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

a

25d2a

b

25da

c

25da+b+c+d

d

25d2(a+b+c+d)

answer is D.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

detailed_solution_thumbnail

Taking α,β,γ  common from C1,C2,C3  respectively, we get 

Δ=αβγ|11α11β11γ111αβγ|    =αβγ|11α11β11α11γ11α101αβαγα|
[using  C2C2C1  , and C3C3C1  ]
=αβγ(1)(βα)(γα)(1α)(1β)(1γ)|1γ1β11|

=αβγ(αβ)(βγ)(γα)(1α)(1β)(1γ)

As α,β,γ  are the roots of ax3+bx2+cx+d=0 .
ax3+bx2+cx+d=a(xα)(xβ)(xγ)
And  αβγ=d/a
Thus,  Δ=(d/a)(25/2)(a+b+c+d)/a=25d2(a+b+c+d)
 

Watch 3-min video & get full concept clarity

tricks from toppers of Infinity Learn

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon