Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8

Q.

If  α,β,γ are different from 1 and are the roots of  ax3+bx2+cx+d=0 and (βγ)(γα)(αβ)=25/2 , then the determinant Δ=|α1αβ1βγ1γαβγα2β2γ2|   equals 
 

see full answer

High-Paying Jobs That Even AI Can’t Replace — Through JEE/NEET

🎯 Hear from the experts why preparing for JEE/NEET today sets you up for future-proof, high-income careers tomorrow.
An Intiative by Sri Chaitanya

a

25d2(a+b+c+d)

b

25da

c

25d2a

d

25da+b+c+d

answer is D.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

detailed_solution_thumbnail

Taking α,β,γ  common from C1,C2,C3  respectively, we get 

Δ=αβγ|11α11β11γ111αβγ|    =αβγ|11α11β11α11γ11α101αβαγα|
[using  C2C2C1  , and C3C3C1  ]
=αβγ(1)(βα)(γα)(1α)(1β)(1γ)|1γ1β11|

=αβγ(αβ)(βγ)(γα)(1α)(1β)(1γ)

As α,β,γ  are the roots of ax3+bx2+cx+d=0 .
ax3+bx2+cx+d=a(xα)(xβ)(xγ)
And  αβγ=d/a
Thus,  Δ=(d/a)(25/2)(a+b+c+d)/a=25d2(a+b+c+d)
 

Watch 3-min video & get full concept clarity

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon